

T. de Jaeger (UC Berkeley), S. González-Gaitán (CENTRA), L. Galbany (U Granada)

Implications of varying Rv in cosmology

CRISP meeting July 9th, 2020

Supernovae

 A supernova (Zwicky 1931) is a stellar explosion that briefly outshines an entire galaxy (10⁹-10¹⁰ L^O).

They play an important role in:

- \rightarrow Cosmology
- → Stellar evolution

 $\rightarrow\,$ Chemical enrichment of the interstellar medium

 \rightarrow Trigger of star formation

SN 1987A in LMC

Supernovae

- Spectral classification based on presence of Hydrogen lines:
 - H lines: II
 - No H lines: la, lb, lc

Supernovae (la)

• White dwarf (WD) of carbon/oxygen C/O in a binary system that undergoes thermonuclear burning (Hoyle & Fowler 1960)

Single degenerate scenario :

WD exceeds 1.44 M $\odot \rightarrow$ electron degenerancy does not support weigth

Double degenerate scenario :

Two WD lose energy due to gravitational waves and collide

SNe cosmology

Apparent magnitude

from measurements

$$\mu = m - M =$$

Distance modulus

Absolute magnitude

constant for standard candles.

SNe are not perfect standard candles and need to be corrected using relations

OBSERVED

SNe cosmology

Apparent magnitude

from measurements

$$\mu = m - M =$$

Distance modulus

Absolute magnitude

Unknnow but constant for standard candles.

SNe are not perfect standard candles and need to be corrected using relations

 \rightarrow Phillips et al. 93, Brighter SNe decline more slowly

SNe cosmology

Stretch

Colour

$$m_{corr} = m_B + \alpha X - \beta C$$

Fainter SNe Ia \rightarrow Redder

Mass step

$$m_{corr} = m_B + \alpha X - \beta C - \beta$$

Nuissance parameters

$$\begin{cases} Mb \\ Mb + \delta M \text{ if } M_{stellar} > 10^{10} Msol \end{cases}$$

SNe Ia in high mass galaxy \rightarrow Brighter

Supernova Cosmology

740 SNe la (Betoule et al. 2014)

Supernova Cosmology

•SNe Ia + Others probes → Better constraints!!!!

Betoule et al. 2014

• If reddening is only due to dust, then $\beta = R_{_{B}} = R_{_{V}} + 1$ (optical total-to-selective extinction)

Howell 2011

• If reddening is only due to dust, then $\beta = R_B = R_V + 1$ (optical total-to-selective extinction)

• Same β for all the host galaxies

Using individual SNe Ia or sample, Rv values measured are unsually low

 \rightarrow Smaller dust grains in SN Ia host-galaxies....

 \rightarrow Intrinsic dust....

Howell 2011

Split into high and low host-mass -> a distinct difference of the color dependence in the biases of Hubble residuals

→ Small Rv high stellar mass

→ Host galaxy stellar mass correlation due to dust.

Brout & Scolnic 2020

BUT correlation is also seen in NIR.

-> some of the correlation may be due to dust but not all of the correlation.
(Ponder et al. 2020, Uddin et al. 2020)

Ponder et al. 2020

Project

Implications of varying Rv in cosmology (w, Ω_m)

Project

Implications of varying Rv in cosmology (w, Ω_m)

Assign a different β to each SN of the sample of 740 SNe Ia

Effect of using a β step with different observables such as color, stretch, Mstellar, mag and redshift

Project: Part 1 (EMCEE)

Project: Part 1 (Montepython)

Add Planck to improve contraints \rightarrow Montepython (~COSMOMC) \rightarrow Model with Δ BIC<5

Project: Part 1 (Montepython)

Difference <0.3 sigma....

Comparison Betoule+14

4chains, 10 000 steps JLA + Planck 2018 without covar from Betoule et. 2014.

$-2\ln(\mathcal{L}) =$	$= \sum_{\rm SN} \left\{ \frac{\left[m_B^{\rm obs} - (Mb + \delta_M - \alpha X + \beta C) - 5 \log_{10}(d_L(x)) + \sigma_{m_B}^2 + (\alpha \sigma_X)^2 + (\beta \sigma_C)^2 + 0.10 \right]}{\sigma_{m_B}^2 + (\alpha \sigma_X)^2 + (\beta \sigma_C)^2 + 0.10} \right\}$					$(2_{\Lambda})) - 25]^2$
	Param	best-fit	$\mathrm{mean}\pm\sigma$	95% lower	$95\%~{\rm upper}$	-
	w	-1.041	$-1.037^{+0.048}_{-0.045}$	-1.127	-0.9469	
	α	0.1356	$0.1359^{+0.0088}_{-0.0086}$	0.1183	0.1535	
	β	3.031	$3.019^{+0.097}_{-0.11}$	2.821	3.221	
	M	-19.11	$-19.1^{+0.029}_{-0.034}$	-19.16	-19.04	
	Δ_M	-0.0479	$-0.05348^{+0.015}_{-0.016}$	-0.08449	-0.02221	
	Ω_m	0.3064	$0.3027^{+0.014}_{-0.012}$	0.2761	0.3298	

JLA + Planck 2014 published by Betoule et. 2014:

Param	$\mathrm{mean} \pm \sigma$
w	-1.018 ± 0.057
α	0.141 ± 0.006
β	3.100 ± 0.075
М	-19.11 ± 0.04
Δ_M	-0.070 ± 0.023
Ω_m	0.307 ± 0.017

Project: Part 2 (β steps)

Fit the cosmology using 1,2,3, or 4β and different observables such as color, stretch, Mstellar, mag and redshift.

 \rightarrow e.g. Mstellar

R-1=Gelman-Rubin convergence test Should be **<0.05**

Project: Part 2 (β steps)

Fit the cosmology using 1,2,3, or 4β and different observables such as color, stretch, Mstellar, mag and redshift.

 \rightarrow e.g. Mstellar

R-1=Gelman-Rubin convergence test Should be **<0.05**

Project: Part 2 (β steps)

Fit the cosmology using 1,2,3, or 4β and different observables such as color, stretch, Mstellar, mag and

F

F

S

Similar to Brout & Scolnic 2020, Smaller Rv for higher stellar mass

 \rightarrow BUT R-1 are large so not sure if MCMC converge well (be suspicous!!!)

 Part 1: Using different β for each SN Ia, no statistical difference is seen on the cosmological parameters

 Part 2: SNe Ia in low stellar mass host galaxy have higher Rv. Need to check our MCMC simulation for 3,4 beta.